narrow framing

My cat kept eating a plant in my apartment that made her vomit. I realized what was going on and moved the plant where she can’t get at it. Apparently some of its leaves were left under a chair and she found them this morning, ate them, and about twenty minutes later let out a series of pre-puke cries and threw-up twice. Poor cat. Why can’t she learn not to eat that plant? Something about it stimulates her highly developed mammalian brain to consume it, and regardless of the inevitable aftermath she can’t override that impulse. If only she had a more developed pre-frontal cortex, like us?

As a fellow mammal with equally puzzling behaviors in response to environmental stimuli – but with the benefit of additional cognitive apparatus, I am reminded of this part of a lecture by Daniel Kahneman called a short course on thinking about thinking sponsored by edge – the excerpt below is from session one, there is video/transcription for all the sessions here. I’ve been voraciously consuming Kahneman’s work lately…. The excerpts in bold/italics are my doing.

Well over 30 years ago I was in Israel, already working on judgment and decision making, and the idea came up to write a curriculum to teach judgment and decision making in high schools without mathematics. I put together a group of people that included some experienced teachers and some assistants, as well as the Dean of the School of Education at the time, who was a curriculum expert. We worked on writing the textbook as a group for about a year, and it was going pretty well—we had written a couple of chapters, we had given a couple of sample lessons. There was a great sense that we were making progress. We used to meet every Friday afternoon, and one day we had been talking about how to elicit information from groups and how to think about the future, and so I said, Let’s see how we think about the future.

I asked everybody to write down on a slip of paper his or her estimate of the date on which we would hand the draft of the book over to the Ministry of Education. That by itself by the way was something that we had learned: you don’t want to start by discussing something, you want to start by eliciting as many different opinions as possible, which you then you pool. So everybody did that, and we were really quite narrowly centered around two years; the range of estimates that people had—including myself and the Dean of the School of Education—was between 18 months and two and a half years.

But then something else occurred to me, and I asked the Dean of Education of the school whether he could think of other groups similar to our group that had been involved in developing a curriculum where no curriculum had existed before. At that period—I think it was the early 70s—there was a lot of activity in the biology curriculum, and in mathematics, and so he said, yes, he could think of quite a few. I asked him whether he knew specifically about these groups and he said there were quite a few of them about which he knew a lot. So I asked him to imagine them, thinking back to when they were at about the same state of progress we had reached, after which I asked the obvious question—how long did it take them to finish?

It’s a story I’ve told many times, so I don’t know whether I remember the story or the event, but I think he blushed, because what he said then was really kind of embarrassing, which was, You know I’ve never thought of it, but actually not all of them wrote a book. I asked how many, and he said roughly 40 percent of the groups he knew about never finished. By that time, there was a pall of gloom falling over the room, and I asked, of those who finished, how long did it take them? He thought for awhile and said, I cannot think of any group that finished in less than seven years and I can’t think of any that went on for more than ten.

I asked one final question before doing something totally irrational, which was, in terms of resources, how good were we are at what we were doing, and where he would place us in the spectrum. His response I do remember, which was, below average, but not by much. [much laughter]

I’m deeply ashamed of the rest of the story, but there was something really instructive happening here, because there are two ways of looking at a problem; the inside view and the outside view. The inside view is looking at your problem and trying to estimate what will happen in your problem. The outside view involves making that an instance of something else—of a class. When you then look at the statistics of the class, it is a very different way of thinking about problems. And what’s interesting is that it is a very unnatural way to think about problems, because you have to forget things that you know—and you know everything about what you’re trying to do, your plan and so on—and to look at yourself as a point in the distribution is a very un-natural exercise; people actually hate doing this and resist it.

There are also many difficulties in determining the reference class. In this case, the reference class is pretty straightforward; it’s other people developing curricula. But what’s psychologically interesting about the incident is all of that information was in the head of the Dean of the School of Education, and still he said two years. There was no contact between something he knew and something he said. What psychologically to me was the truly insightful thing, was that he had all the information necessary to conclude that the prediction he was writing down was ridiculous.

COMMENT: Perhaps he was being tactful.

KAHNEMAN: No, he wasn’t being tactful; he really didn’t know. This is really something that I think happens a lot—the outside view comes up in something that I call ‘narrow framing,’ which is, you focus on the problem at hand and don’t see the class to which it belongs. That’s part of the psychology of it. There is no question as to which is more accurate—clearly the outside view, by and large, is the better way to go.